New York Smells: A Large Multimodal Dataset for Olfaction
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Figure 1. Multimodal olfaction in-the-wild. (a) We present New York Smells: a diverse, multimodal dataset of natural olfactory signals
and paired visual data. We show one sequence of images and smell signals that we obtained in a public park (one scene of many in our
dataset). We use this dataset for in-the-wild multimodal olfactory learning tasks that were not possible with previous datasets: (b) learning
cross-modal features between olfaction and images, (c) retrieving images based on their corresponding olfactory signals, (d) recognizing
in-the-wild scene, object, and material categories from smell, (e) distinguishing different grass species.

Abstract

While olfaction is central to how animals perceive the
world, this rich chemical sensory modality remains largely
inaccessible to machines. One key bottleneck is the lack
of diverse, multimodal olfactory training data collected
in natural settings. We present New York Smells, a large
dataset of paired image and olfactory signals captured
“in the wild.” Our dataset contains 7,000 smell-image
pairs from 3,500 distinct objects across indoor and outdoor
environments, with approximately 70x more objects than
existing olfactory datasets. Our benchmark has three tasks:
cross-modal smell-to-image retrieval, recognizing scenes,

objects, and materials from smell alone, and fine-grained
discrimination between grass species. Through experi-
ments on our dataset, we find that visual data enables
cross-modal olfactory representation learning, and that our
learned olfactory representations outperform widely-used
hand-crafted features.

1. Introduction

Olfaction—the sense of smell—is a key way that animals,
and to a lesser extent humans, perceive the world. Yet, this
rich “chemical world”, central to the sensory experience of
many species, is largely imperceptible to machines.
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Figure 2. The New York Smells dataset. We collect a diverse dataset of paired sight and olfaction by visiting many locations within New
York City and recorded a variety of materials (top rows) and objects (bottom rows) in different scenes. We show a selection of the captured
images here. All samples have a corresponding olfactory signal captured from the Cyranose electronic nose.

This is in contrast to sight, sound, and touch, where ad-
vances in machine learning, particularly unsupervised and
multimodal learning, have led to rapid improvements in ma-
chine abilities. One of the major obstacles to applying this
approach to olfaction is the lack of suitable data. Exist-
ing olfaction datasets have largely been based on percep-
tual descriptors, rather than the raw outputs of olfactory
sensors, or are captured in lab settings. Unlike audio and
touch [8, 21, 46], existing olfactory datasets are not paired
with vision (or other sensory modalities), making it difficult
to link olfaction to the representations of other modalities.

In this paper, we address this problem by creating New
York Smells, a large in-the-wild dataset of paired vision
and olfaction. We visited dozens of indoor and outdoor
scenes in New York City, such as parks, gyms, dining
halls, libraries, and streets. We walked through each scene
and recorded naturally synchronized images and smells of
their odorant objects (Fig. la). To supplement this data,
we also record a suite of other sensors: RGB-D, temper-
ature, humidity, and volatile organic compound (VOC)
concentration. Our dataset (Fig. 2), which contains 7000
olfactory-visual samples from 3500 objects, is significantly

larger and more diverse than other olfactory datasets.
For example, this is 70x as many distinct objects as the
lab-collected concurrent work of Feng et al. [15].

We use our dataset’s visual signals to establish a bench-
mark for in-the-wild smell perception. First, we propose
a smell-to-image retrieval task that evaluates the ability of
a model to establish cross-modal visual-olfactory associa-
tions (Fig. I¢). Second, we obtain pseudolabels for odorant
objects, materials, and scenes, which we use to define cor-
responding category recognition tasks (Fig. 1d). Finally, we
evaluate fine-grained recognition by proposing a benchmark
for grass species recognition (Fig. le).

To further demonstrate the utility of paired visual-
olfactory signals, we use our dataset for multimodal rep-
resentation learning. Inspired by self-supervised learning
methods in other multimodal domains [1, 32, 38], we train
general-purpose olfactory features by training a joint em-
bedding between smell and sight (Fig. 1b) using contrastive
learning. Through experiments on our downstream tasks
from our benchmark using a variety of different network
architectures, we find that our learned olfactory represen-
tations significantly outperform hand-crafted smell features
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Figure 3. Odorant analysis. We show the distribution of objects
and materials in our dataset. We use these labels to define smell
understanding benchmarks.

that are widely used in prior work.

We see this dataset as a step toward in-the-wild, multi-
modal olfactory perception, as well as a step toward link-
ing sight with smell. While olfaction has traditionally been
approached in constrained settings, such as quality assur-
ance, there are many applications in natural settings. For
example, as humans, we constantly use our sense of smell
to assess the quality of food, identify hazards, and detect un-
seen objects. Moreover, many animals, such as dogs, bears,
and mice, show superhuman olfaction capabilities [25], sug-
gesting that human smell perception is far from the limit of
machine abilities.

Our work makes the following contributions:

* Our dataset provides much more diverse and naturalistic
olfaction recordings than previous datasets.

e Our dataset is the first to pair in-the-wild olfaction with
images.

* Using the visual signals in our dataset, we establish a
benchmark for in-the-wild olfaction understanding.

* We show that vision provides supervision for general-
purpose olfactory feature learning.

2. Related Work

Machine Olfaction. Previous work in machine olfaction
have often focused on idealized settings, often requiring a
miniature chemistry lab to be embedded into the system,
which is expensive, bulky, and often impractical. Research
has studied processing molecular structures for the purpose
of designing scents [34] by using graph neural networks
on synthetic data to predict human preferences such as per-
fume, or how to modify crops to prevent pests from spread-

ing [18]. Other work does recognition from real-world sen-
sors, e.g., detecting diseases like COVID [20] or explosive
devices [39]. Despite these advances, machine olfaction
research has been limited to a) narrow domains that lack
the diversity and realistic complexity of everyday situations,
and b) heavily relied on exact molecular information, which
requires hardware that is not available to portable, low-cost
sensors. Our dataset instead is designed for diverse scenar-
ios, where sensors are noisy and incomplete, and methods
must scale to vast domains of in-the-wild scents and odors.

Raw signals from electronic noses are high-dimensional
and noisy, making data-driven methods attractive for un-
covering structure. At the molecular level, psychophysical
datasets enable models to predict perceptual attributes [24],
and graph-based approaches propose a principal odor map
(POM) [26]. Mixture studies are limited, showing approx-
imate perceptual similarity [37] and the existence of olfac-
tory metamers [33]. Exploratory work has used mass spec-
tra [11], as well as ion-mobility and e-nose data [28], but
largely under lab conditions. Recent work emphasizes the
importance of calibrating olfactory neuroscience to natural
concentration ranges [42], motivating the need for olfactory
data in natural environments. In concurrent, unpublished
work Feng et al. [15] collect a dataset of smells using an
e-nose. However, their approach is limited to a highly con-
trolled lab environment (they place one object at a time in
a consistent room) and is relatively small scale (comprising
50 objects). By contrast, our work: 1) captures “in-the-
wild” olfaction in natural environments of smells, 2) con-
tains paired multimodal signals, 3) is much more extensive.
We also go beyond prior work by using our dataset for mul-
timodal representation learning.

We specifically focus on the Cyranose e-nose [35], since
it is a popular, hand-held sensor that provides a rich olfac-
tory signal that captures a variety of chemical properties. It
has been applied to a range of scientific and industrial ap-
plications, such as measuring food quality [5, 27, 49], rec-
ognizing bacteria [4, 14], evaluating the quality of construc-
tion materials [2], detecting fires [30], monitoring wildlife
and fauna [12, 17], and disease detection [36, 41].

Cross-Modal Supervision. There have been a variety of
different methods for supervising one sensory modality us-
ing another. Early work by De Sa [10] proposed to use
hearing to train vision through self-supervision. Ngiam
et al. [29] used a deep generative model to learn an audio-
visual speech representation. In contrast to these works, we
use our dataset for olfactory representation learning through
cross-modal supervision with sight. Our work is closely re-
lated to audio-visual [3, 31] and visual-tactile [13, 46, 48]
data collection efforts in which a human probes objects with
a sensor while recording video. By contrast, we pair olfac-
tion with multiple visual sensors. Recent work has learned
a multimodal representation of taste [6]. However, this
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Figure 4. Capturing paired sight and olfaction. We walk through a variety of real-world scenes and capture paired olfaction and visual
signals using a camera mounted to an e-nose on a custom 3D-printed sensor rig. We point the e-nose’s snout at each object or substance of
interest and record multiple images and smell signals from different orientations. We also capture a suite of other supplementary modalities:
depth (from an RGB-D camera), temperature, humidity, and ambient VOC concentrations (from a PID sensor).

approach is based on solely on text descriptions of wine,
whereas we use a real signal from a sensor.

Animal Olfaction. This work is motivated in part by the
olfactory capacity of animals. Domestic dogs in particular,
are renowned for having an extraordinary sense of smell.
Their ability is manifest in various detection tasks, identify-
ing everything from the presence of bed bugs to landmines
to owners’ low blood sugar [19]. Anatomically, dogs have
hundreds of millions more olfactory receptor cells (the cells
that begin the translation of VOCs into the perception of
an odor) than humans do [22]. This enables them to detect
more smells and more types of smells at lower concentra-
tions. Their noses have separate routes for smelling and
respiration, which enables airflow to arrive at the olfactory
epithelium with every inhale [9]. The dog olfactory bulb
is two percent of their brain by volume and sixty times the
relative size of the human olfactory bulb [23].

3. The New York Smells Dataset

We collect a large-scale dataset of natural olfactory-visual
sensory data. Specifically, our dataset contains multimodal
“smell-centric” data. Unlike previous efforts on smell in
machine perception [16, 26] and olfactory neuroscience
[43], which rely on controlled or synthetic environments
and stimuli, our dataset is collected in-the-wild. We probe
everyday objects in their natural environments using paired
vision and olfaction sensors. This approach captures the
range of naturally occurring odorant concentrations, a prop-
erty that is key for modeling olfaction under natural condi-
tions [43]. We will publicly release the full dataset.

3.1. Collecting Natural Data
We now describe how we collected the dataset.

Hardware. To collect olfactory and visual data in natural
environments, we leverage the natural synchronization be-
tween smell and sight during an olfactory observation. We
chose to use the Cyranose 320 electronic nose [35], because
it is a popular handheld sensor that is used in a wide variety
of real-world smell sensing applications (see Sec. 2). Cyra-
nose consists of a nanocomposite sensor array of 32 sen-
sors. Each sensor responds to different chemical properties
of volatile compounds that make up smell, without being
specific to one volatile compound. We mount an iPhone
12 camera on Cyranose, angled to view the snout, where
the olfactory measurement is collected. Cyranose operates
at 2Hz, providing a 32-dimensional olfactory measurement
at each timestep. Synchronized with the e-nose, a high-
fidelity RGB camera captures the olfactory measurement at
1920 x 1080 resolution and 15 FPS.

We record an RGB-D signal using an Intel RealSense
D405 (at 15 FPS and 1280 x 720 resolution), along with
ambient temperature and humidity. We also collect com-
plementary ambient volatile organic compound (VOC) con-
centrations using a MiniPID2 PPM WR sensor. The PID
olfactory measurements reflect the naturally occurring con-
centrations of smells by diffusion, rather than active sniff-
ing. The e-nose and all sensors are tethered real-time to a
mobile station, consisting of battery, data storage, and com-
pute to enable data collection across diverse settings, from
parks, apartment settings, to streets. The complete capture
set-up is shown in Figure 4.

The Cyranose obtains a measurement by actively draw-



Raw Olfactory Signal Image

F Sample 4 F Baseline 4

32 Sensors

Figure 5. Olfactory signal: The raw smell signal is 7" x 32 di-
mensions where 7" is the capture time. The first part of capture is
the baseline phase, where the ambient background smell is sensed.
The second part is the sample phase, where the smell of the object
of interest is sensed. This example shows the response for a flower.

ing air through its snout and exposing the sampled com-
pounds to an array of 32 sensors. Each sensor is a conduc-
tive polymer composite whose electrical resistance changes
as odorant molecules are absorbed and cause the polymer
to swell. We sample the resistance of all 32 sensors over
time as the air sample is acquired, yielding a time-varying
response for each channel. The raw olfactory signal is the
matrix rg € RT*32  where each column corresponds to
one sensor in the array and each row to one timestep.

Capturing procedure. Sensing objects in the scene re-
quires separating the ambient odors from the odor of the
object. For each sample, we first capture the baseline smell
of the ambient environment, followed by the smell of the
object of interest. Cyranose has two independent air path-
ways that can “sniff” outside air into its sensor chamber.
The purge/baseline inlet, shown in Figure 4, on the side of
Cyranose, pulls in ambient air, which leaves the sensor ar-
ray through the exhaust outlet. Through this purge inlet-
to-exhaust pathway, we first record the baseline smell for
10 seconds, receiving a 14 x 32 baseline matrix, represent-
ing each sensor for 14 timesteps. During this interval, air is
drawn through the side port rather than the measurement in-
let to avoid contamination from the target. Next, we record
two samples through the main pathway, the snout. For data
efficiency, we record two samples for each object from dif-
ferent positions. Both samples are 10 seconds. The raw
olfactory data is thus a 28 x 32 matrix, which is the con-
catenation of the baseline and sample stages. See Figure 5.

Labeling the dataset. Figure 2 visualizes the scale and
diversity of our vision & olfaction dataset. We used VLMs
and the images in our dataset to automatically label the ob-
jects and materials. For materials, we used the Matador vi-
sual taxonomy of materials [7]. Using both views available
in our dataset and this taxonomy as a closed set of cate-
gories, we generated material labels with VLMs (GPT-40).
For objects, we manually wrote a closed set of 49 categories
that spans our dataset, then generating vision labels with
VLMs (GPT-40). We manually labeled the scene categories
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Figure 6. Contrastive olfactory-image learning. To demon-
strate the effectiveness of our dataset, we train general-purpose
olfactory representations using contrastive learning. We train the
model to align co-occurring visual and smell signals. The visual
encoder processes RGB images, while the olfaction encoder pro-
cesses time-series sensor data from an e-nose.

for each sample, assigning each data collection session into
one of 8 scene categories.

Dataset split. We uniformly split the dataset into train
and validation splits. Since we collect two samples of each
object during the capture procedure, we ensure that each
sample appears in the same split, thus preventing overlap
between the train and validation sets. The dataset has 7K
olfactory-vision pairs, 3.5K unlabeled objects, 70 hours of
raw video from both cameras, and 196K timesteps of raw
smell measurement (baseline and sample stage olfactory
measurements). Note that other dataset splits are possible
as well, which we leave to future work, for example, study-
ing generalization to novel ambient situations.

Dataset analysis. Figure 2 shows qualitative examples
from the dataset and Figure 3 shows the distribution of
materials and objects. We collected data across 60 ses-
sions over two months. The dataset settings include several
parks, university buildings, offices, streets, libraries, apart-
ment settings, and dining halls. Each location had multiple
data collection sessions. Our dataset has 41% outdoor and
59% indoor environments.

IRB. The Columbia IRB reviewed the collection proce-
dure and determined it to be not human subjects research.
No personal identifying information was collected.

4. Methods

As an application of our dataset, we use the multimodal
synchronization between vision and olfaction to learn self-
supervised representations for olfaction. The resulting rep-
resentation can be used for cross-modal retrieval as well as
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Figure 7. Cross-modal retrieval qualitative results. We use our joint embeddings to match smell to images. Given a query smell, we
find the images in the dataset that are the closest match in embedding space. Each row shows a reference smell query along with the top 5
image retrievals predicted by our model. The ground-truth smell-image pair is highlighted in green.

Smell Encoder

Mean Rank | Median Rank | Recall @ 5(%) 1 Recall @ 10 (%) 1 Recall @ 20 (%) T

Chance 467 467 0.536 1.07 2.14
MLP (Smellprint) 375.9 329 2.04 343 6.22
CNN (Raw Smell) 1184 41 12.9 21.1 32.6
MLP (Raw Smell) 159.5 56 17.3 24.2 33.8
Transformer (Raw Smell) 104.0 28 16.5 29.6 43.1

Table 1. Cross-modal retrieval quantitative results. We evaluate model using standard retrieval metrics (N =933).

classification tasks.

4.1. Multimodal Contrastive Learning

Humans have a limited sense of smell and there are rel-
atively few words to describe smells compared to other
senses [44, 47] (although see [45] for possible exceptions).
This gap makes it challenging to establish the label taxon-
omy and gather annotations on the scale required for ef-
fective machine learning. We instead will learn olfactory
representations from unlabeled examples, leveraging cross-
modal associations between smell and sight. Inspired by
Contrastive Language-Image Pretraining (CLIP), we use
contrastive learning to train a joint embedding between
smell and images, which we analogously term Contrastive
Olfaction-Image Pretraining (COIP).

Given the dataset of smell and corresponding visual data
{x%, x5} |, we learn olfactory and visual representations
fos and fy, by jointly training both encoders using a con-
trastive loss [40]:

N . _
exp (fo, (x7) - fos (x5)/T)

E = — 1 - - bl

i:zlOgzj-ilexp(fmx;)-fes<xfg)/v) M

where 7 = 0.07 is the temperature. We analogously define

the smell to image loss Lg ;, where the denominator sums
over the visual modality. We minimize both losses to learn
the representations fy, and fg:

arg Inain Lrs+Lsr. 2

By associating sight and smell (Figure 6), we learn a repre-
sentation that can support the downstream interpretation of
olfactory stimuli for multiple tasks. We apply these learned
representations to a variety of tasks: smell-to-image re-
trieval (Fig. 1c), recognizing scene, material, and objects
(Fig. 1d), and fine-grained discrimination between grass
species (Fig. le).

4.2. Input Signals and Architectures

We experiment with two different input signals in our
dataset: a raw representation that has no pre-processing, and
a hand-crafted feature space that is widely used in machine
olfaction research.

Raw Signal. Firstly, we directly use the raw signal from
the sensor, which is an T° X 32 matrix representing the
resistance of the 32 sensors inside the Cyranose over T’
timesteps. We directly input this matrix into the neural net-
work, which then does contrastive learning, and allows end-
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Figure 8. Recognizing scenes, objects, and materials from smell. We show the top 3 predictions from linear probing on the smell
encoder. The predictions are from smell alone and the image is shown for visualization purposes only. Predictions are organized by color:
red indicates scene classification, green indicates object classification and blue indicates material classification.

Scenes Materials Objects
Method Input Scratch SSL Rand Scratch SSL Rand Scratch SSL Rand
Chance 125 125 125 1.9 1.9 19 2.0 20 20
MLP Smellprint 422 325 314 384 20 6.0 33 496 59
Transformer Raw smell 91.0 904 727 233 140 7.1 13.8 184 123
CNN Rawsmell 995 950 745 119 123 94 179 198 8.7

Table 2. Recognizing odorants. We evaluate classification accuracy at recognizing scenes, objects, and materials from smell alone. For
each approach, we compare end-to-end learning with scratch initialization (Scratch), self-supervised representations with linear probes

(SSL), and linear probe with random weights (Rand).

to-end learning. We experiment with both convolutional
neural networks (CNNs) and transformers as the backbone.
By learning representations on this raw signal, there is the
potential to discover highly powerful representations for ol-
faction that outperform hand-crafted features.

Smellprint. Secondly, we compare using a hand-crafted
olfactory feature called a smellprint, which is widely used in
representing smell from a Cyranose sensor [14, 17, 36, 41].
We use it as a baseline for the feature encoding. The smell-
print produces a 32-dimensional vector from the raw smell
matrix, and it summarizes the sensor response to odorants
relative to the ambient environment. However, it discards
many signals from the raw input, such as the 2nd-order
statistics (e.g., correlations between different sensors).

The smellprint is computed by applying Savitzky—Golay
filtering (window length w, polynomial order p) indepen-
dently to each sensor time series in both the baseline and
sample stages. Let R; ; denote the (filtered) resistance of

sensor ¢ € {1,...,32} at time index j. Let B be the base-
line indices, and .S = S; U S5 the union of the two sample
windows. Smellprint features compute per-sensor ambient
level, sample peak, and the final feature as:

1
B > Rij G

JjEB

Baseline (ambient) resistance: R ; =

Sample peak resistance: Riax,i = magc Ri;, 4
Jj€

Riax,i — Roi

Smellprint (rel. response): S; = i . (5)
0,i

We then directly feed the 32 dimensional vector in a multi-
layer percepton (MLP) before contrastive learning.

5. Tasks and Experimental Results

Our dataset evaluates three olfactory tasks: a) cross-modal
retrieval between olfaction and vision, b) recognition tasks



including scene, material, and object classification from
smell alone, and c) fine-grained discrimination of olfac-
tory signals. We evaluate performance with supervised
networks, contrastive unsupervised networks with linear
probes, as well as the hand-crafted smellprint.

5.1. Cross-Modal Retrieval

Setup. For each query pair of smell and vision {x%, x}}
in our held-out test set, we sample a distractor set of im-
ages D = {x! f\!ll. We first embed the query pair into
the shared olfactory and visual space to get {2, 27}, where
zE = fos(x%) and 2 = fo,(x%). We also embed ev-
ery image x} in D into the same olfactory-visual space:
zi = fo,(x%). We sort every image feature z; by its dis-
tance to the query smell feature zZ. If ¥ is closest to z%,
then it will have a rank of 1. Following [32, 38], we use
median rank, mean rank, and recall @ K to measure the
percentage of smell queries for which the matching image
embedding is ranked in the top K results.

Results. Table | compares CNN, MLP, and Transformer
architectural variants of our olfactory encoder fy, trained
on the raw olfactory data as well as the hand-crafted smell-
print. Contrastive pretraining using smellprint performs
better than chance in all metrics. However, training the
olfactory encoder on the raw olfactory signal leads to sig-
nificant improvement compared to the smellprint encoder,
independent of architecture. This shows the richer infor-
mation present in the raw olfactory data, unlocking stronger
cross-modal associations between sight and smell. We show
qualitative results in Figure 7. Retrievals from our model of-
ten show semantic groupings. The odor of a book retrieves
images of other books, the odor of leaves retrieves images
of foliage. These results suggest that the learned representa-
tion captures meaningful cross-modal structure. Retrievals
also group by material properties. For instance, the odor of
moss on a concrete bench retrieves images of moss on tree
bark and on another bench, while the odor of a wooden stick
retrieves images of groundcover and a tree bark.

5.2. Scene, Object, and Material Recognition

Setup. We evaluate how well the representations are able
to discriminate scenes, objects, and materials from smell
alone. For each task, we compare architectural variants of
the smell encoder (MLP, Transformer, CNN) trained via
olfactory—visual contrastive learning against the same en-
coders with random weights, as well as versions trained
on smellprint features rather than raw sensory inputs. We
use linear probes on the olfaction representation. To train
a probe, we use the activations from the penultimate layer
of the olfaction network, and train it to predict the labels
derived from the visual stream using GPT-40 on the train-
ing set. We then evaluate the probe on the held-out test set.
Linear probes isolate the contribution of the representation

Method Input
Chance 50.0

Smellprint 66.7
Smellprint 85.7
Smellprint 90.0

Raw smell 47.6
Raw smell 52.4
Raw smell 92.9

Accuracy

Random weights
Trained from scratch
SSL + linear probe

Random weights
Trained from scratch
SSL + linear probe

Table 3. Fine-grained discrimination. We evaluate our olfaction
models’ ability to discriminate between grass species.

itself. Strong linear probe performance indicates that the
representation encodes semantic information that is linearly
separable, and thus useful for downstream tasks.

Results. As shown in Table 2, self-supervised olfaction
representations trained with visual supervision outperforms
baselines. Models trained on raw sensory inputs also
achieve higher accuracy than models trained with the hand-
crafted smellprint features. These results show that deep
learning from raw olfaction signals is significantly better
than hand-crafted features. In Figure 8, we showcase Top 3
predictions from linear probing our smell encoder, spanning
diverse scenes, materials, and objects in our test set.

5.3. Fine-grained Discrimination

We ask whether learned olfactory representations can cap-
ture fine-grained differences, using our benchmark. In this
benchmark, the goal is to distinguish between two grass
species recorded at the same campus lawn, where they co-
exist. To test this, we collected alternating samples of both
grass species across six 30-minute sessions, yielding a bal-
anced dataset of 256 examples. We trained a linear classifier
on the features learned through olfactory—visual contrastive
learning and evaluated it on a held-out recording session of
42 samples.

Results. Table 3 shows classification accuracy for dis-
criminating the two grass species. Training on the raw
olfactory sensor signal (instead of hand-crafted features)
yields the highest accuracy—exceeding all variants based
on smellprints. These results suggest that olfactory—
visual learning preserves more fine-grained information
than learning with smellprints, and that visual supervision
provides a signal for exploiting this information.

6. Conclusion

We present New York Smells, a real-world multimodal
dataset of paired visual and olfactory signals collected in
natural, in-the-wild environments. We demonstrated that
visual data provides effective supervision for learning olfac-
tory representations through contrastive learning, and mod-



els trained on raw olfactory signals substantially outper-
forming traditional hand-crafted features.

We see our work as opening two new research direc-
tions. It takes a step toward linking the fields of com-
puter vision to computational olfaction, which have previ-
ously been studied separately. We have shown several ways
that visual signals can supervise olfaction, such as through
self-supervised contrastive learning with static images, but
there are many other supervision cues that vision can pro-
vide, such as by conveying how objects change over time
and 3D space. Our work is also a step toward creating ol-
factory methods that can successfully operate in-the-wild,
rather than in lab settings. We will release code and data.
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7. Appendix

7.1. VLM Prompt for Labeling

The following Python function is used to label objects using GPT-40, where images are passed to GPT-4o0 along with a
structured prompt to select the closest matching object category.

Listing 1. Object labeling with GPT-4o.

def label_gpt_views (image_pathl, image_path2, image_path3, image_path4, indexed_labels,
labels) :
image_datal = image_to_base64 (image_pathl)
image_data2 = image_to_baseb64 (image_path?2)
image_data3 = image_to_baseb64 (image_path3)
)

20

21

22

23

24

25

26

27

28

29

40

41

)

43

image_data4 = image_to_baseb64 (image_path4

text_prompt = (

"You_are_shown_four images_where_a blue sensor probe with_a yellow_tip_is_pointing,
at_the_,same_object "

"from_different_angles._This_is_the_same_target_object_being_analyzed.\n\n"

"Choose_the_best _matching_category label for this object from_the list_below.\n\n"

"Respond,_with_the NUMBER_corresponding_to_the best_label. Do_not_invent_ labels._ "

"If none_are perfect, ,choose _the_closest_match.\n\n"

"If the_image_is_gray, (with_white_plus_sign), _choose_unlabeled  (number 0).\n\n"

"Category,_options:\n" +
"\n".join (indexed_labels) + "\n\n"
"Respond,_with _only_the_number._ No_text."

)

response = client.chat.completions.create(

model="gpt—-40o",
messages=|[

{

"role": "user",
"content": [
{"type": "text", "text": text_prompt},
{"type": "image_url", "image_url": {
"url": f"data:image/png;base6d, {image_datall}"
|
{"type": "image_url", "image_url": {
"url": f"data:image/png;base6d, {image_data2}"
|
{"type": "image_url", "image_url": {
"url": f"data:image/png;base6d, {image_data3}"
|
{"type": "image_url", "image_url": {

Hhy

1,
max_tokens=10,
temperature=0

)

"url": f"data:image/png;base6d, {image_datad}"

label number = int (response.choices[0].message.content.strip())

return label_number
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The following Python function sends two image views of the same object to GPT-4o0 to determine the object’s underlying
physical material. The prompt includes detailed instructions and examples to avoid visual or semantic biases.

Listing 2. Material labeling from two image views using GPT-4o.

def label gpt_views (image_pathl, image_path2, indexed_labels):
image_datal = image_to_baseb64 (image_pathl)
image_data2 image_to_base64 (image_path?2)
text_prompt (

20
21
22
23
24
25

26

27

"You,_are_shown_two_images where_a, blue_sensor probe_with_a vellow_tip_is _pointing_at
_the _same_object "

"from different _angles._This_is_the same_target_object_being_analyzed.\n\n"

"Your task_is_to_identify, the_object’s_**main_physical materialxx_-_not_what it
contains, what _it’s, shaped like, _or_what_it’s_used_for.\n\n"

"Choose_the_most_appropriate_material_from the_ following list:\n"

f"{’,_’ .join (indexed_labels) }\n\n"

"«xLabel_what, the_whole _object is_actually, made_of.**_Ignore gloss,, color, texture,
logos, or, symbolic_cues.\n\n"

"sxExamples:+x\n"

"-_Any, food item other_than_bread -> 'food-other’\n"

"-_A_smooth_paper cup ~—> 'paper’\n"

"-_A_shiny_white_bowl_-> 'porcelain’_or_'thermoplastic’_ (depends_on_shape, _stiffness
, .and_context)\n"

"-_A_juice_dispenser labeled /orange_juice’ _->_'thermoplastic’, _not '/ fruit’/\n"

"- A _brown_padded chair_seat_—>_'leather’, _not_ 'terracotta’\n"

"- A_light-colored_sidewalk_slab_->_'concrete’ or /cement’,_ not ’'asphalt’\n\n"

"xxDo_not label based_on:x*\n"

"-_Color,(e.g., _orange !=_terracotta;_gray,!=_asphalt)\n"

"-_Function_(e.g.,_juice_bottle !=_fruit)\n"

"- Gloss,(e.g., _shiny_surface !=_glass)\n"

"-_Shape,(e.g., cup_shape_!=_plastic)\n"

"-_Logos, or _printed text\n"

"- _Any_object_not _being directly_probed\n\n"

"If you_are_absolutely_certain_it,_doesn’t_belong_to_any, of_the materials _in_the_ list
, choose_unlabeled. No_text."

"Now_return_ **only_the_ indexxx_of the best _matching material_ from_ the list_as_a,
number, without_quotes._Never_return_ any_ text such_as 'I don’t_know’ _or_’/
unlabeled’ ."
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7.2. Additional Examples of Recognition from Smell

We include additional sampled examples showcasing the ability of our smell encoder to recognize scenes, objects, and mate-
rials from olfactory input alone. These examples further demonstrate the generalization of our model across diverse contexts
in the test set and highlight the semantic structure captured by olfactory representations trained with visual supervision. Each
prediction is obtained via linear probing and is color-coded by task type: red for scenes, blue for objects, and green for
materials.

Press Select

F or Pri
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Table 4. Non-cherry-picked examples of recognizing scenes, objects, and materials from smell. Each tab displays the top-3 predictions
obtained via linear probing on the smell encoder. Prediction types are color-coded: red for scenes, blue for objects, and green for materials.
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